
F1/10 Autonomous Racing

ROS Services, Launch, Bags, and Parameters

Lab Session 3

Instructor: Madhur Behl madhur.behl@virginia.edu

Course Website: https://www.f1tenth.racing/

Git repo: https://github.com/linklab-uva/f1tenth-course-labs

Lab objectives:

In this lab, we will understand how to create and use .launch files; how to create and play rosbags , and how to invoke turtlesim
services.

Section [A]: ROS Services rospy API
Section [B]: Using roslaunch
Section [C]: ROS Bags: Recording and playing back data
Section [D]: ROS Parameters

Update your git repo first

The following instructions assume

You created a catkin_ws folder on your machine, using the instructions discussed during the previous lab sessions.
You created a github folder in your home directory and cloned the f1tenth-course-labs repository.

Step 1)

Pull the latest code from the f1tenth-course-labs git repo:

cd ~/github
git pull

Ensure that any additional files after the git pull are copied into the appropirate directory under the smae package in the catkin_ws

[A] Getting familair with rospy service and client

Run and examine the following nodes:

In terminal 1:

mailto:madhur.behl@virginia.edu
https://www.f1tenth.racing/
https://github.com/linklab-uva/f1tenth-course-labs

madhur@ubuntu:~$ rosrun beginner_tutorials add_two_ints_server.py

In terminal 2:

madhur@ubuntu:~$ rosrun beginner_tutorials add_two_ints_client.py 1234 5678
Requesting 1234+5678
1234 + 5678 = 6912

Go over the package manifest to see what is enabled for service and message generation
Go over CMakeList.txt to see the paths to msg and srv files.

add_two_ints_server.py

#!/usr/bin/env python
import roslib; roslib.load_manifest('beginner_tutorials')

from beginner_tutorials.srv import *
import rospy

def handle_add_two_ints(req):
 print "Returning [%s + %s = %s]"%(req.a, req.b, (req.a + req.b))
 return AddTwoIntsResponse(req.a + req.b)

def add_two_ints_server():
 rospy.init_node('add_two_ints_server')
 s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints)
 print "Ready to add two ints."
 rospy.spin()

if __name__ == "__main__":
 add_two_ints_server()

add_two_ints_client.py

#!/usr/bin/env python
import roslib; roslib.load_manifest('beginner_tutorials')

import sys

import rospy
from beginner_tutorials.srv import *

def add_two_ints_client(x, y):
 rospy.wait_for_service('add_two_ints')
 try:
 add_two_ints = rospy.ServiceProxy('add_two_ints', AddTwoInts)
 resp1 = add_two_ints(x, y)
 return resp1.sum
 except rospy.ServiceException, e:
 print "Service call failed: %s"%e

def usage():
 return "%s [x y]"%sys.argv[0]

if __name__ == "__main__":
 if len(sys.argv) == 3:
 x = int(sys.argv[1])

 y = int(sys.argv[2])
 else:
 print usage()
 sys.exit(1)
 print "Requesting %s+%s"%(x, y)
 print "%s + %s = %s"%(x, y, add_two_ints_client(x, y))

[B] Using roslaunch

roslaunch starts nodes as defined in a launch file.

roslaunch [package] [filename.launch]

[B.1] >> chat.launch

Launch and examine the chat.launch file.

You can simply open up a terminal and type:

roslaunch beginner_tutorials chat.launch

You should see two talkers and one listener node spawn where the talkers are appropriate named as talker1 and talker2 , and
the listener is named listener1 . You should verify this using rosnode list

>> NOTE: Everything is runnig in the same terminal session as the one where you ran the
 roslaunch command. i.e. all three nodes are running int the same session.

>> You can kill roscore and relaunch chat.launch again and everythign will still work.

Even if roscore is not running, ROS will start roscore for you when you launch a launch file.

The launch file for chat.launch contians the following commands:

<launch>
 <node name="talker1" pkg="beginner_tutorials" type="talker.py" output="screen"/>
 <node name="listener1" pkg="beginner_tutorials" type="listener.py" output="screen"/>
 <node name="talker2" pkg="beginner_tutorials" type="talker.py" output="screen"/>
</launch>

we are simply runing 3 nodes in sequence (using the <node> tag) and using the name keyword to name the nodes.

[B.2] >> turtlemimic.launch

Lets examine another launch file: turtlemimic.launch

<launch>

 <group ns="turtlesim1">
 <node pkg="turtlesim" name="sim" type="turtlesim_node"/>
 <node pkg="turtlesim" name="teleop" type="turtle_teleop_key" launch-prefix="gnome-terminal -e"/>
 </group>

 <group ns="turtlesim2">
 <node pkg="turtlesim" name="sim" type="turtlesim_node"/>
 </group>

 <node pkg="turtlesim" name="mimic" type="mimic">
 <remap from="input" to="turtlesim1/turtle1"/>
 <remap from="output" to="turtlesim2/turtle1"/>
 </node>

</launch>

Two turtlesims will start and in a new terminal the teleop interface will show up. You you issue commands for one of the turtle to
move, you will find that the second turtle will mimic those commands.

Now lets move the turtle in the turtlesim1 instance using rostopic pub

rostopic pub /turtlesim1/turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, -1.8]'

You will see the two turtlesims start moving even though the publish command is only being sent to turtlesim1.

Notice how you didnt need to start roscore but it was started when you launched the launch file.

>> NOTE:

When we want a node to launch in a separate terminal window from the launch file we can use the launch-prefix="gnome-
terminal -e" option in the <node> tag of the file.

[C] ROS Bags: Recording and playing back data

Description: This part of the tutorial will teach you how to record data from a running ROS system into a .bag file, and then to play
back the data to produce similar behavior in a running system.

[C.1] Recording data (creating a bag file)

Lets pull up the turtlesim ocean and the teleop node. First, execute the following commands in separate terminals:

Terminal 1:

roscore

Terminal 2:

rosrun turtlesim turtlesim_node

Terminal 1:

rosrun turtlesim turtle_teleop_key

OR use roslaunch to launch both the turtlesim nodes at the same time.

roslaunch beginner_tutorials turtlemimic.launch

This will start two separate turtlesim nodes and a mimic node that allows for the keyboard control of both turtlesim's by mapping
the output of turtlesim1 to the input of turtlesim2 .

[C.2] Recording all published topics

Examine the full list of topics that are currently being published in the running system. To do this, open a new terminal and execute
the command:

rostopic list -v

This should yield the following output:
We now will record the published data. Open a new terminal window. In this window run the following commands:

mkdir ~/bagfiles
cd ~/bagfiles
rosbag record -a

Here we are just making a temporary directory to record data and then running rosbag record with the option -a, indicating that all
published topics should be accumulated in a bag file.

Move back to the terminal window with turtle_teleop and move the turtle around for 10 or so seconds.

In the window running rosbag record exit with a Ctrl-C. Now examine the contents of the directory ~/bagfiles. You should see a file
with a name that begins with the year, date, and time and the suffix .bag. This is the bag file that contains all topics published by any
node in the time that rosbag record was running.

madhur@ubuntu:~/bagfiles$ ls
2019-02-12-12-18-13.bag

[C.3] Examining and playing the bag file

Now that we've recorded a bag file using rosbag record we can examine it and play it back using the commands rosbag info and
rosbag play. First we are going to see what's recorded in the bag file. We can do the info command -- this command checks the
contents of the bag file without playing it back. Execute the following command from the bagfiles directory:

rosbag info <your bagfile>

You should see something like:

The next step in this tutorial is to replay the bag file to reproduce behavior in the running system. First kill the teleop program that
may be still running from the previous section - a Ctrl-C in the terminal where you started turtle_teleop_key. Leave turtlesim running.
In a terminal window run the following command in the directory where you took the original bag file:

rosbag play <your bagfile>

In this window you should immediately see something like:

madhur@ubuntu:~/bagfiles$ rosbag play 2019-02-12-12-18-13.bag
[INFO] [1549996933.935808161]: Opening 2019-02-12-12-18-13.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.
[DELAYED] Bag Time: 1549991893.101184 Duration: 0.000000 / 16.123553 Delay
[RUNNING] Bag Time: 1549991893.101184 Duration: 0.000000 / 16.123553
[RUNNING] Bag Time: 1549991893.101184 Duration: 0.000000 / 16.123553
[RUNNING] Bag Time: 1549991893.102541 Duration: 0.001357 / 16.123553

In its default mode rosbag play will wait for a certain period (.2 seconds) after advertising each message before it actually begins
publishing the contents of the bag file. Waiting for some duration allows any subscriber of a message to be alerted that the message
has been advertised and that messages may follow. If rosbag play publishes messages immediately upon advertising, subscribers
may not receive the first several published messages. The waiting period can be specified with the -d option.

Eventually the topic ~/turtle1/cmd_vel~ will be published and the turtle should start moving in turtlesim in a pattern similar to the one
you executed from the teleop program. The duration between running rosbag play and the turtle moving should be approximately
equal to the time between the original rosbag record execution and issuing the commands from the keyboard in the beginning part
of the tutorial. You can have rosbag play not start at the beginning of the bag file but instead start some duration past the beginning
using the -s argument. A final option that may be of interest is the -r option, which allows you to change the rate of publishing by a
specified factor. If you execute:

madhur@ubuntu:~/bagfiles$ rosbag info 2019-02-12-12-18-13.bag
path: 2019-02-12-12-18-13.bag
version: 2.0
duration: 16.1s
start: Feb 12 2019 12:18:13.10 (1549991893.10)
end: Feb 12 2019 12:18:29.22 (1549991909.22)
size: 150.4 KB
messages: 2007
compression: none [1/1 chunks]
types: geometry_msgs/Twist [9f195f881246fdfa2798d1d3eebca84a]
 rosgraph_msgs/Log [acffd30cd6b6de30f120938c17c593fb]
 turtlesim/Color [353891e354491c51aabe32df673fb446]
 turtlesim/Pose [863b248d5016ca62ea2e895ae5265cf9]
topics: /rosout 4 msgs : rosgraph_msgs/Log (2 connections)
 /turtlesim1/turtle1/cmd_vel 19 msgs : geometry_msgs/Twist
 /turtlesim1/turtle1/color_sensor 992 msgs : turtlesim/Color /turtlesim1/turtle1/po

rosbag play -r 2 <your bagfile>

You should see the turtle execute a slightly different trajectory - this is the trajectory that would have resulted had you issued your
keyboard commands twice as fast.

[C.4] Recording a subset of the data

If any turtlesim nodes are running exit them and relaunch the keyboard teleop launch file:

rosrun turtlesim turtlesim_node
rosrun turtlesim turtle_teleop_key

In your bagfiles directory, run the following command:

rosbag record -O subset /turtle1/cmd_vel /turtle1/pose

The -O argument tells rosbag record to log to a file named subset.bag, and the topic arguments cause rosbag record to only
subscribe to these two topics. Move the turtle around for several seconds using the keyboard arrow commands, and then Ctrl-C the
rosbag record.

You may have noted that the turtle's path may not have exactly mapped to the original keyboard input - the rough shape should
have been the same, but the turtle may not have exactly tracked the same path. The reason for this is that the path tracked by
turtlesim is very sensitive to small changes in timing in the system, and rosbag is limited in its ability to exactly duplicate the
behavior of a running system in terms of when messages are recorded and processed by rosrecord, and when messages are
produced and processed when using rosplay. For nodes like turtlesim, where minor timing changes in when command messages
are processed can subtly alter behavior, the user should not expect perfectly mimicked behavior.

[D] ROS Parameters

A parameter server is a shared, multi-variate dictionary that is accessible via network APIs. Nodes use this server to store and
retrieve parameters at runtime. As it is not designed for high-performance, it is best used for static, non-binary data such as
configuration parameters. It is meant to be globally viewable so that tools can easily inspect the configuration state of the system
and modify if necessary.

[D.1] Parameter Types

The Parameter Server uses the following data types for parameter values:

-32-bit integers
-booleans
-strings
-doubles
-iso8601 dates
-lists
-base64-encoded binary data

You can also store dictionaries (i.e. structs) on the Parameter Server, though they have special meaning. The Parameter Server
represents ROS namespaces as dictionaries. For example, imagine you set the following three parameters:

~~~#!/usr/bin/env bash
/gains/P = 10.0
/gains/I = 1.0
/gains/D = 0.1

#!/usr/bin/env bash
{ 'P': 10.0, 'I': 1.0, 'D' : 0.1 }

### [D.2] Run the parameter server demo 
 
Open a shell instance and laucnh the following:

#!/usr/bin/env bash
roslaunch rospy_tutorials param_talker.launch

#!/usr/bin/env bash
sudo apt-get install ros-melodic-ros-tutorials

To understadn the ourput of the `param_talker.launch`, let us quickly examine this file:

xml

<!-- set /foo/utterance -->
<param name="utterance" value="Hello World" /> 
 
<param name="to_delete" value="Delete Me" /> 
 
<!-- a group of parameters that we will fetch together -->
<group ns="gains"> 
  <param name="P" value="1.0" /> 
  <param name="I" value="2.0" /> 
  <param name="D" value="3.0" />
</group> 
 
<node pkg="rospy_tutorials" name="param_talker" type="param_talker.py" output="screen"> 
 
  <!-- set /foo/utterance/param_talker/topic_name --> 
  <param name="topic_name" value="chatter" /> 
 
</node>

You can either `get` them back separately, i.e. retrieving `/gains/P` would return `10.0`, or you can retrieve `/

`rospy_tutorials` is installed by default when you downloaded ROS but in case this package is missing for you you



python
import rospy
from std_msgs.msg import String

def param_talker():
rospy.init_node('param_talker')

# Fetch values from the Parameter Server. In this example, we fetch
# parameters from three different namespaces:
#
# 1) global (/global_example)
# 2) parent (/foo/utterance)
# 3) private (/foo/param_talker/topic_name) 
 
# fetch a /global parameter 
global_example = rospy.get_param("/global_example") 
rospy.loginfo("%s is %s", rospy.resolve_name('/global_example'), global_example) 
 
# fetch the utterance parameter from our parent namespace 
utterance = rospy.get_param('utterance') 
rospy.loginfo("%s is %s", rospy.resolve_name('utterance'), utterance) 
 
# fetch topic_name from the ~private namespace 
topic_name = rospy.get_param('~topic_name') 
rospy.loginfo("%s is %s", rospy.resolve_name('~topic_name'), topic_name) 
 
# fetch a parameter, using 'default_value' if it doesn't exist 
default_param = rospy.get_param('default_param', 'default_value') 
rospy.loginfo('%s is %s', rospy.resolve_name('default_param'), default_param) 
 
# fetch a group (dictionary) of parameters 
gains = rospy.get_param('gains') 
p, i, d = gains['P'], gains['I'], gains['D'] 
rospy.loginfo("gains are %s, %s, %s", p, i, d) 
 
# set some parameters 
rospy.loginfo('setting parameters...') 
rospy.set_param('list_of_floats', [1., 2., 3., 4.]) 
rospy.set_param('bool_True', True) 
rospy.set_param('~private_bar', 1+2) 
rospy.set_param('to_delete', 'baz') 
rospy.loginfo('...parameters have been set') 
 
# delete a parameter
if rospy.has_param('to_delete'): 
    rospy.delete_param('to_delete') 
    rospy.loginfo("deleted %s parameter"%rospy.resolve_name('to_delete')) 
else: 
    rospy.loginfo('parameter %s was already deleted'%rospy.resolve_name('to_delete')) 
 
# search for a parameter 
param_name = rospy.search_param('global_example') 
rospy.loginfo('found global_example parameter under key: %s'%param_name) 
 

As can be seen, this launch files `sets` a parameter `global_example` followed by declaring a namespace called `f
`gains` itself is a subgroup of `foo` and has three parameters `P`, `I`, and 'D'. 
 
Finally a `param_talker.py` node is launched as part of the `rospy_tutorials` package. 
 
If we go through the `param_talker.py` script, you will find the following code: 
 
** You can use `roscd rospy_tutorials/006_parameters` to go to the directory where the script is located.



# publish the value of utterance repeatedly 
pub = rospy.Publisher(topic_name, String, queue_size=10) 
while not rospy.is_shutdown(): 
    pub.publish(utterance) 
    rospy.loginfo(utterance) 
    rospy.sleep(1)

if name == 'main':
try:
param_talker()
except rospy.ROSInterruptException: pass

### [D.3] rospy: Getting parameters 
 
The command is:

rospy.get_param(param_name)

In this node, this is used at several points:

python
global_example = rospy.get_param("/global_example")
utterance = rospy.get_param('utterance')
private_param = rospy.get_param('~private_name')
default_param = rospy.get_param('default_param', 'default_value')

fetch a group (dictionary) of parameters
gains = rospy.get_param('gains')
p, i, d = gains['p'], gains['i'], gains['d']

You can optionally pass in a default value to use if the parameter is not set. 
Names are resolved relative to the node's namespace. 
 
While the node is still running, you can inspect the parameters from the command line using `rosparam` 
 
Try

#!/usr/bin/env bash
rosparam get /foo/gains

and try,

#!/usr/bin/env bash
rosparam get /foo/gains/P



rospy.set_param(param_name, param_value)

Examples:

python

Using rospy and raw python objects
rospy.set_param('a_string', 'baz')
rospy.set_param('~private_int', 2)
rospy.set_param('list_of_floats', [1., 2., 3., 4.])
rospy.set_param('bool_True', True)
rospy.set_param('gains', {'p': 1, 'i': 2, 'd': 3})

#!/usr/bin/env bash
rosparam -- help

Output of the preceding command will contain the following:

#!/usr/bin/env bash
rosparam is a command-line tool for getting, setting, and deleting parameters from the ROS Parameter Server. Commands:
rosparam set set parameter
rosparam get get parameter
rosparam list list parameter names

To list the parameters for the ``/turtlesim` node, we will use the following command:

#!/usr/bin/env bash
$ rosparam list

Output of the preceding code is as follows:

### [D.4] rospy: Setting parameters 
 
As described earlier, you can set parameters to store strings, integers, floats, booleans, lists, and dictionarie

### [D.5] Parameter Server of turtlesim 
 
The Parameter Server maintains a dictionary of the parameters that are used to configure the screen of turtlesim.
 
Use the `help` option to determine the form of the `rosparam` command:



#!/usr/bin/env bash
/background_r
/background_g
/background_b
/rosdistro
/roslaunch/uris/host_d125_43873__51759
/rosversion
/run_id

#!/usr/bin/env bash
$ rosparam get /

Output:

#!/usr/bin/env bash
background_b: 255
background_g: 86
background_r: 69
rosdistro: 'indigo
roslaunch:
uris: {host_d125_43873__60512: 'http://D125-43873:60512/'}
rosversion: '1.11.13
run_id: 2429b792-d23c-11e4-b9ee-3417ebbca982

You can change the colors of the turtle's screen to a full red background using the `rosparam set` command:

#!/usr/bin/env bash
$ rosparam set background_b 0
$ rosparam set background_g 0
$ rosparam set background_r 255
$ rosservice call /clear
~~~

You will see a red background on the turtle screen. To check the numerical results, use the rosparam get / command.

Note that the last four parameters were created by invoking the Master with the roscore command, as discussed pre

Change parameters for the color of the turtle's background

To change the color parameters for turtlesim, let's change the turtle's background to red. To do this, make the b
Note that the `clear` option from rosservice must be executed before the screen changes color.

The default turtle screen is blue. You can use `rosparam get /` to show the data contents of the entire Parameter

